AIL 722: Reinforcement Learning

Lec 1: Course Introduction

Raunak Bhattacharyya

Recent Advances in Al

Source: Meta-Al

Let me find that for you.	
What's your email address?	
christ	@email.com
Thanks! Looks like you have a	few
orders in progress. Click on o	ine to
orders in progress. Click on a see more info. 👇	ne to
orders in progress. Click on a see more info.	ne to
orders in progress. Click on o see more info.	Order #677
orders in progress. Click on o see more info.	Order #677 Your order is
orders in progress. Click on o see more info.	Order #677 Your order is We'll send yo
orders in progress. Click on o see more info.	Order #677 Your order is We'll send y the tracking

Source: Hootsuite

Core Idea

Source: Adobe

 $p_{\theta}(\mathbf{x}) \qquad p_{\theta}(\mathbf{y}|\mathbf{x})$

RL: Discovery

Looks like something a person might draw!

Source: Deepmind, DQN

Unexpected: sometimes better than what a human may have done!

What Is Reinforcement Learning

Mathematical formalism for learning-based decision making

Approach for learning decision making and control from experience

Contextualizing RL

Search Problems

Uncertainty in the Real World

How other agents might behave

state s, action a random state s'_1

Source: istockphoto

Applications

Sensors

Demand

Weather

Motivating Example

- 10x10 grid
- Up, down, left, right
- 0.7 **correct** dir (as instructed), 0.1 rest
- Green cells are absorbing (end state)

	-0.2	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.2
N	-0.1	0	0	0	0	0	0	0	0	-0.1
	-0.1	0	0	0	0	0	0	3	0	-0.1
	-0.1	0	0	0	0	0	0	0	0	-0.1
	-0.1	0	0	-5	0	0	0	0	0	-0.1
	-0.1	0	0	0	0	0	0	0	0	-0.1
	-0.1	0	0	0	0	0	0	0	0	-0.1
	-0.1	0	0	-10	0	0	0	0	10	-0.1
	-0.1	0	0	0	0	0	0	0	0	-0.1
	-0.2	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.2

Contrast to Supervised Learning

Input: x

Output: yData: $D = \{(x_i, y_i)\}$ Goal: $f_ heta(x_i) pprox y_i$

Someone gives you the labels

Input: State s_t at each time step Output: Action a_t at each corresponding time step Data: $(s_1, a_1, r_1, s_2, a_2, r_2, \dots, s_T, a_T, r_T)$ Goal: Learn policy $\pi_{\theta} : s_t \to a_t$ to maximize total reward obtained

Pick your own action

Contrast to Supervised Learning

- i.i.d. data
- Known ground truth labels in training
- Data is not i.i.d.
 - Previous outputs influence future inputs
- No ground truth labels
 - We know the reward

RL Objective

$$p_ heta(s_1, a_1, \dots, s_T, a_T) = p(s_1) \prod_{t=1}^T \pi_ heta(a_t \mid s_t) \, p(s_{t+1} \mid s_t, a_t)
onumber \ p_ heta(au)$$

$$heta^* = rg\max_{ heta} \, \mathbb{E}_{ au \sim p_{ heta}(au)} \left[\sum_t r(s_t, a_t)
ight]$$

Learning Objectives

- Ability to recognize the applicability of RL, formulate problems as RL problems, choose the right algorithm, and implement said algorithm
- Get a broad perspective on RL
- Understand the 'why' of RL algorithms
- Exposure to standard RL software and benchmarks
- Ability to implement RL algorithms