AIL 722: Reinforcement Learning

Lecture 24: Towards Deep Q-Learning

Raunak Bhattacharyya

Outline

• From fitted Q-iteration to Online Q-Learning

• Exploration rules: Intro

• Assignment 2 overview

Arriving Here

- Bootstrap and sample the expected return
- Off-policy algorithm

- Approximate the value function
- Fitted VI was not model-free
- Fitted QI

• Q-Learning

Fitted QI

Properties

- Did not require knowledge of transition dynamics
- Did not require explicit representation of policy

• Off policy

Fitted QI
Collect data
1. Collect dataset {
$$(s_i, a_i, r_i, s'_i)$$
} using some policy
Compute target values for each transition
2. Set $y_i \leftarrow r(s_i, a_i) + \gamma \cdot \max_{a'_i} Q_{\phi}(s'_i, a'_i)$
Update function approximator for Q by training NN params to fit targets
3. Set $\phi \leftarrow \arg \min_{\phi} \sum_i \frac{1}{2} ||Q_{\phi}(s_i, a_i) - y_i||^2$

Multiple gradient steps

Fitted QI

Properties

- Did not require knowledge of transition dynamics
- Did not require explicit representation of policy

• Off policy

What's the spectrum?

Choices

- How many transitions to collect?
- How many gradient steps to update parameters
- How many times to alternate between new target creation and new function fitting before collecting more data

Completely Online Algorithm

1 step of data collection

1. Take some action a_i and obtain (s_i, a_i, s'_i, r_i)

1 step before collecting more data

2.
$$y_i = r(s_i, a_i) + \gamma \cdot \max_{a'_i} Q(s'_i, a'_i)$$

3.
$$\phi \leftarrow \phi - \alpha \cdot \frac{dQ_{\phi}}{d\phi}(s_i, a_i) \cdot \left(Q_{\phi}(s_i, a_i) - y_i\right)$$

1 gradient step

Look familiar?

Exploration

1. Take some action a_i and obtain (s_i, a_i, s'_i, r_i)

2.
$$y_i = r(s_i, a_i) + \gamma \cdot \max_{a'_i} Q(s'_i, a'_i)$$

3. $\phi \leftarrow \phi - \alpha \cdot \frac{dQ_{\phi}}{d\phi}(s_i, a_i) \cdot \left(Q_{\phi}(s_i, a_i) - y_i\right)$

How do we pick an action in step 1?

Exploration

• Epsilon-greedy

• Boltzmann exploration

Summary & Announcements

- Summary
 - Online Q learning
 - Exploration ideas

- Announcements
 - Midterm marks clarification session
 - Office hours today