

AIL 722: Reinforcement Learning

Lecture 26: Replay buffer and Target Network

Raunak Bhattacharyya

YARDI SCHOOL OF ARTIFICIAL INTELLIGENCE INDIAN INSTITUTE OF TECHNOLOGY DELHI

Recap & Today's Outline

- Serial correlation
- Experience replay

- Online Q-learning with replay buffer
- Target network

• Double Learning

Back to online Q-Learning

1. Take some action a_i and obtain (s_i, a_i, s'_i, r_i)

2.
$$\phi \leftarrow \phi - \alpha \cdot \frac{dQ_{\phi}}{d\phi}(s_i, a_i) \cdot \left(Q_{\phi}(s_i, a_i) - [r(s_i, a_i) + \gamma \cdot \max_{a'_i} Q(s'_i, a'_i)] \right)$$

Why did correlation not matter in tabular Q-learning?

Q-Learning with Experience Replay

▶ 1. Collect dataset $\{(s_i, a_i, r_i, s'_i)\}$ using some policy, add to \mathcal{B} 2. Sample a batch (s_i, a_i, r_i, s'_i) i.i.d. from \mathcal{B} K times 3. $\phi \leftarrow \phi - \alpha \sum_i \cdot \frac{dQ_{\phi}}{d\phi}(s_i, a_i) \cdot \left(Q_{\phi}(s_i, a_i) - [r(s_i, a_i) + \gamma \cdot \max_{a'_i} Q_{\phi}(s'_i, a'_i)]\right)$ Note the sum

On Experience Replay

- Biologically inspired: Experiences in memory
- First time by Long Ji Lin paper: 1992
- Resurrected by DQN paper: 2015
 - With much larger buffer size
 - With off-policy algorithm
 - With neural value functions
 - With target nets

Machine Learning, 8, 293-321 (1992) © 1992 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Self-Improving Reactive Agents Based On Reinforcement Learning, Planning and Teaching

LONG-JI LIN ljl@cs.cmu.edu School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

LETTER

doi:10.1038/nature14236

Human-level control through deep reinforcement learning

Volodymyr Mnihl*, Koray Kavukcuoglu¹*, David Silver¹*, Andrei A. Rusu¹, Joel Veness¹, Marc G. Bellemare¹, Alex Graves¹, Martin Riedmiller¹, Andreas K. Fidjeland¹, Georg Ostrovski¹, Stig Petersen¹, Charles Beattie¹, Amir Sadik¹, Ioannis Antonoglou¹, Helen King¹, Dharshan Kumaran¹, Daan Wierstra¹, Shane Legg¹ & Demis Hassabis¹

Problem: Moving Target

3. Set
$$\phi \leftarrow \arg \min_{\phi} \sum_{i = \frac{1}{2}} \|Q_{\phi}(s_i, a_i) - y_i\|^2$$

• Fit the NN params to convergence

2. Set
$$y_i \leftarrow r(s_i, a_i) + \gamma \cdot \max_{a'_i} Q_{\phi}(s'_i, a'_i)$$

• Target y has changed

Online Q-Learning

1. Take some action a_i and obtain (s_i, a_i, s'_i, r_i)

2.
$$y_i = r(s_i, a_i) + \gamma \cdot \max_{a'_i} Q(s'_i, a'_i)$$

3.
$$\phi \longleftarrow \phi - \alpha \cdot \frac{dQ_{\phi}}{d\phi}(s_i, a_i) \cdot \left(Q_{\phi}(s_i, a_i) - y_i\right)$$

Replay Buffer and Target Network

▶ 1. Save target network parameters: $\phi \longleftarrow \phi'$

2. Collect dataset
$$\{(s_i, a_i, r_i, s'_i)\}$$
 using some policy, add to \mathcal{B}
N times
3. Sample a batch (s_i, a_i, r_i, s'_i) i.i.d. from \mathcal{B}
K times
4. $\phi \leftarrow \phi - \alpha \sum_i \cdot \frac{dQ_{\phi}}{d\phi}(s_i, a_i) \cdot \left(Q_{\phi}(s_i, a_i) - [r(s_i, a_i) + \gamma \cdot \max_{a'_i} Q_{\phi'}(s'_i, a'_i)]\right)$

Unified Framework: Interacting Processes

What were the interacting processes in GPI?

Can we identify similar processes here?

Problem: Overestimation

- Episodes always start in A
- Right transitions to terminal state and terminates
- Left transitions to B with reward 0
- Many possible actions from B

- All lead to termination
- Reward is drawn from N(-0.1,1)

Summary & Announcements

- Summary
 - Serial correlation
 - Replay buffer
 - Moving target
 - Target Network
 - Unified Process
 - Overestimation
 - Double Learning

- Announcements
 - If project (instead of assignment 3)
 - Proposal deadline: TBA
 - Project deadline will be same as assignment 3 deadline
 - Proposal (1 page excl. refs):
 - What is the problem?
 - What are its challenges?
 - What has been done before?
 - What do you plan to do?
 - Weightage
 - Paper selection