
AIL 722 
Case Studies with DQN in Real Life

Vaibhav Bihani & Sanket Gandhi
1

Ref: S&B Chapter 16



Challenges in applying RL in real life

● How to represent/store value functions/policy?

E.g. Backgammon : 30 pieces, 24 possible locations (3024 ~ 104 Zettabyte)

● How to represent state?
○ Feature designing

● Non-IID Data
● Training Instability

2



TD Gammon (1995,2002)

3

● Goal is to move all your checkers 
off the board before your opponent 
does.

● Roll two dice to determine points to 
move

● Hit : If lands on opponent’s single 
checker  , Removed and re-enters

● Cannot stack over opponent’s 
stack
 



TD-Gammon (1995,2002)

4

● Used a nonlinear form of TD(λ)

● Value function as single layer ANN

● After playing about 300,000 games 
against itself, reached level of best 
programmes at that time

● Learned to play certain opening 
positions differently than was the 
convention among the best human 
players
 



Atari Games 

● Atari2600 Games : Arcade video games, first 
started in 1970s

5



Atari Games
● Playing Atari with Deep Reinforcement Learning

● Minh et Al. (2013) at DeepMind

● Shown that same architecture can learn most of 
the 49 Atari games at a level of humans

● The first step towards “General Artificial 
Intelligence”

● Google acquired DeepMind in 2014 

6



Architecture : Preprocessing

7

1) Original 210 x 160 with 128 color 
palette (High Dim , Large Mem Req,)

2) Cropping , Rescaling, Downsample
3) Take Max value over current and last 

frames for each pixel color value 
(Removes flickering of game)

4) Take Y channel ( Luminescence) and 
rescale to 1

5) Final Image 84 x 84 x 1
6) Stack last 4 
7) 84 x 84 x 4  



Architecture : ConvNet

8



Training : Loss Function

9

● Loss Function: 

● Gradient Update



Training : Issues

10

● Naïve Q-learning oscillates or diverges with neural nets 

○ Data is sequential :Successive samples are correlated, non-i.i.d. 
○ Policy changes rapidly with slight changes to Q-values Policy may 

oscillate. Distribution of data can swing from one extreme to another 
○ Scale of rewards and Q-values is unknown : Gradients can be large 

unstable when backpropagated



Training : Experience Replay

11

● Learning from batches of consecutive samples is 
problematic: - 
○ Samples are correlated => inefficient learning 

● Address these problems using experience replay 
○ Continually update a replay memory table of transitions 

(st , at , rt , st+1) as game (experience) episodes are 
played 

○ Train Q-network on random minibatches of transitions 
from the replay memory, instead of consecutive 
samples 



Training : Freeze Target Q-Network and Reward Clipping

12

● Clip Rewards to [-1 ,1 ]
● Prevents large Q-values
● Ensures Well conditioned gradients



Training : Algorithm

13



Performance in Breakout Game

14

http://www.youtube.com/watch?v=V1eYniJ0Rnk


Results

15



Results

16



Thank You

17


