

AIL 722: Reinforcement Learning

Lecture 37: A2C & A3C

Raunak Bhattacharyya

YARDI SCHOOL OF ARTIFICIAL INTELLIGENCE

• Policy gradient

• Reinforce

• Variance Reduction

Why Policy Optimisation instead of Value Function

- Might be simpler than V or Q
 - Robotic grasping
- V does not prescribe what action to pick
 - Compute 1 Bellman backup
 - Needs dynamics model
- Q also does not directly prescribe the action
 - Need to compute argmax efficiently

Variance

Let's see a toy example

Variance Reduction

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) \right) \left(\sum_{t=1}^{T} r(s_t, a_t) \right) \right]$$

$$pprox rac{1}{N} \sum_{i=1}^N \sum_{t=1}^T
abla_ heta \log \pi_ heta(a_{i,t}|s_{i,t}) \left(\sum_{t'=t}^T r(s_{i,t'},a_{i,t'})
ight)$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{i,t} | s_{i,t}) \left(Q(s_{i,t}, a_{i,t}) - V(s_{i,t}) \right)$$

Recap & Today's Outline

• Policy gradient

• Reinforce

- Actor-critic
- Performance and Examples

• Variance Reduction

• DQN with continuous actions

Actor-Critic

Sample $\{s_i, a_i\}$ from $\pi_{\theta}(a|s)$

Fit $\hat{V}_{\phi}(s)$ to sampled reward sums

How to do this?

Evaluate
$$\hat{A}^{\pi}(s_i, a_i) = r(s_i, a_i) + \hat{V}_{\phi}(s'_i) - \hat{V}_{\phi}(s_i)$$

Approximation here

$$\nabla_{\theta} J(\theta) \simeq \sum_{i} \nabla_{\theta} \log \pi_{\theta}(a_{i}|s_{i}) \hat{A}^{\pi}(s_{i}, a_{i})$$

Improve policy by $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Advantage computation

$$A(s_t, a_t) = Q_w(s_t, a_t) - V_v(s_t)$$
$$Q(s_t, a_t) = \mathbb{E}[r_{t+1} + \gamma V(s_{t+1})]$$
$$A(s_t, a_t) = r_{t+1} + \gamma V_v(s_{t+1}) - V_v(s_t)$$

Different Approaches

$$\begin{aligned} \nabla_{\theta} J(\theta) &= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) G_{t} \right] & \text{REINFORCE} \\ &= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ \mathcal{Q}^{w}(s, a) \right] & \text{Q Actor-Critic} \\ &= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ \mathcal{A}^{w}(s, a) \right] & \text{Advantage Actor-Critic} \\ &= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ \delta \right] & \text{TD Actor-Critic} \end{aligned}$$

Image taken from CMU CS10703 lecture slides

From Sutton and Barto

REINFORCE with Baseline (episodic), for estimating $\pi_{\theta} \approx \pi_*$

Input: a differentiable policy parameterization $\pi(a|s, \theta)$ Input: a differentiable state-value function parameterization $\hat{v}(s, \mathbf{w})$ Algorithm parameters: step sizes $\alpha^{\theta} > 0$, $\alpha^{\mathbf{w}} > 0$ Initialize policy parameter $\theta \in \mathbb{R}^{d'}$ and state-value weights $\mathbf{w} \in \mathbb{R}^{d}$ (e.g., to **0**)

Loop forever (for each episode):
Generate an episode
$$S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$$
, following $\pi(\cdot|\cdot, \theta)$
Loop for each step of the episode $t = 0, 1, \ldots, T - 1$:
 $G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$
 $\delta \leftarrow G - \hat{v}(S_t, \mathbf{w})$
 $\mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \nabla \hat{v}(S_t, \mathbf{w})$
 $\theta \leftarrow \theta + \alpha^{\theta} \gamma^t \delta \nabla \ln \pi(A_t|S_t, \theta)$
(G_t)

Actor-Critic Process: Visuals

Actor-Critic Process: Visuals

Step 4

$$\Delta heta \equiv lpha
abla_ heta (log \pi_ heta(s,a)) \hat{q}_w(s,a)$$

Change in policy parameters (weights)

Action value estimate

Actor-Critic Performance

Method	Training Time	Mean	Median
DQN	8 days on GPU	121.9%	47.5%
Gorila	4 days, 100 machines	215.2%	71.3%
D-DQN	8 days on GPU	332.9%	110.9%
Dueling D-DQN	8 days on GPU	343.8%	117.1%
Prioritized DQN	8 days on GPU	463.6%	127.6%
A3C, FF	1 day on CPU	344.1%	68.2%
A3C, FF	4 days on CPU	496.8%	116.6%
A3C, LSTM	4 days on CPU	623.0%	112.6%

Example

Labyrinth, A3C paper, Source: <u>Youtube</u>

Source: Youtube

Paper Presentation

- What are they trying to do:
 - Title
 - Abstract
 - Background
 - Conclusion
- Why are they doing this
 - Title
 - Abstract
 - Background
- How do they do it
 - Methods
 - Appendix
- How do they justify it works: results

- Answer the questions
 - What is the problem and why important
 - Why is it challenging
 - What was done before
 - What has the paper done
- Demonstrate that you understand the math and algorithm
- Rehearse
 - We will impose a hard stop at 10 mins